ANALYSIS OF THE APPLICABILITY OF THE
ADDITIVITY LAW OF THERMAL
RESISTANCES IN NONSTEADY REGIMES

N. N. Medvedev UDC 536.2.083

Conditions of limited applicability of the additivity law of thermal resistances in nonsteady
regimes, as used in the methods of two time —temperature intervals, are determined.

1. For multilayered systems in the steady thermal regime the following additivity law of thermal
resistances holds:

i_v_h_ | (1)
2 —d )

i=1

where H = Zh; is the total thickness of the multilayer system, 7\{ is the effective value of the thermal con-
ductivity of the entire system obtained by the steady method, and h; and A; are the thickness and thermal
conductivity of the individual plates in the system. Under the conditions of the steady thermal regime all
the methods of determining the thermal conductivity give the same value of the effective thermal conduc-
tivity for the multilayered composite systems irrespective of the order of arrangement of the plates in the
system (within the admissible error),

Measuring the effective thermal conductivity of the multilayered system by different methods of the
nonsteady thermal regime, we obtain different values of thermal conductivity A" = A', Furthermore, the
value of the thermal conductivity A" determined by any one method of the nonsteady regime will be different
for different arrangements of the plates in the multilayered system. This can be expressed in the following
way:

Ke=mz', 2)

where m is a correction coefficient which characterizes the degree of divergence of the values of A" and
A'. The quantity m depends on the nature of the nonsteady temperature field and has different values in
different methods of nonsteady regimes.

l Using the measured value of A" for the effective thermal

conductivity of the system, we obtain an error equal to
W= mh — A
(1) = = =m—1. (3)
( ) }“l }\’I

Keeping formulas (1) and (2) in mind, we obtain

2 b H _ mH
e }'i :)\:’ A * (4)

[ - ] In formula (1), instead of the correction coefficient m we can in~
Heater :
troduce a term o in such a way that
Fig. 1. A schematic diagram of N\ My + o= A . (5}

the Iahoratory equipment, —d Ay
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Fig. 2. Graphs of the dependence m = f(¢; n): a) for 6
=0.10, 6, = 0.25, and 6; = 0.50 in the first buffer method;
b) for ¢, = 0.10, 6, = 0.25, and 6; = 0.45 in the second
basic method; ¢) for 6, = 0.10, 6, = 0.25, and 6; = 0.50 in
the second buffer method.

The quantities m and ¢ are connected to each other by the formula m = 1— (gA")/H. If the value of m or ¢
is known or can be determined by some calibration, then, measuring A", Eqs. (4) or (5) can be used for de-
termining any unknown A for remaining unknowns Aj_;.

In order to determine the justification for the applicability of the additivity law expressed by formula
(1) under conditions of some nonsteady regime, it is necessary to analyze the numerical values of m or ¢
as a function of the characteristics of the temperature field used. This can be done if the characteristics
of the temperature field used by any nonsteady method are known. In the methods of two time—temperature
intervalg [1] the characteristics of the temperature field are known and hence the dependence of the correc-
tion coefficient, for example, m, on certain characteristics of the field can be investigated.

The schematic diagram of the laboratory equipment is shown in Fig. 1.
2. In the first buffer method a single buffer plate M, which is of the same material as the heat re~
ceiver (see Fig. 1) is used. The temperature field on which the first buffer method is based is given by

0= _(1~a)xlerfelyn- D] —aerfclyin+3)] + ...} =Fa n, 5), ©)

“n
If the buffer plate M,, as well as My, is absent, that is, if hy =0 and n = 0, then Eq. (6) goes over to
the equation of the temperature field of the first fundamental method,

0= (1 --a)ferfcy—aeric3y+ ...} =F(z p). . G

if we consider formula (4), then in the first buffer method the additivity law of thermal resistances is

written in the form ]
h h
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Since in all the methods of two time —temperature intervals the coefficient of thermal conductivity is given
by the formula A = beva, where

i I3 or - bh _ (9)

2y p Vi 21?(1@) ’
<t
&

the left-hand side of Eq. (8) can be expressed in the form

mH _ 2mVAy 1 p

N b g’

Here p' and ' are the effective values of the parametiers p and ¢ which are taken from operating tables of
the first basic method [1]:

. At . Ar,
p=F& == ( Arj \)ande:h(_x) =1, ( A-ci ) .

The quantities a7y and A7, are determined from experiments in which the plates A and M, (see Fig. 1) are
regarded as one investigated sample of thicknesg H = h + h;. Next

h :21/371(1'7)

N 3

s b
where the values of parameters p and ¢ are related by Eq. (6) of the first buifer method. Then Eq. (8) be-
comes

om] Aty ( Ve ) AR ( Vo ) _

b g b g 7»0

or, dividing both parts by 247,/b, we obtain
/5 ] heb
. ( Vp )_ Vo . k

e 1021 At

Since b = ApANapg = NAay; hy/2/ay = L and LAAT, = £, then
m(‘/é}?’)——(xp):'é, (10)

Vi .
e

M= ———=— . 11)
Vp

7

&

’

€

and hence we obtain

Equation (6) on which the first buffer method is based, enables us to relate the quantities £, vp/e ,andkfor a
number of values of & and n for fixed values of 6,, ¢,, and ¢;. Knowing &, vp/e, and k, and finding the quan-
tity vp'/ e’ from the operating table of the first basic method corresponding to a given k, it is not difficult
to compute the correction factor m for a number of values of o and n from Eq. (11).

The graphs of the dependence m = f(, n) are shown in Fig. 2a.

3. In the second basic method the buffer plate M, is not there. The material of plate M, is the same
as that of the heat receiver B (see Fig. 1).

The temperature field on which the second basic method is based is described by the equation
0= —u){erfcfy(n-+ 1) ~aericly(Bn-- D] — cerfc[8y(n — 1] = .. Y= Flo; y; a). (12)
The notation is the same as in Eq. (8). Equation (12) also permits us to determine the quantities &,

Vb/e, and Vp'/e' for a number of values of « and n for fixed values of 8,, 6,, and 65, and to compute the cor~
rection factor m from formula (11) (Fig, 2b).

4. Inthe second buffer method, the buffer plates M1 and M2 are of the same thickness and consist of the
same materialasthe heat receiver (see Fig. 1).

The temperature field on which the second buffer method is based, is described by

8= (1—a?){fericly@n+ ] +~aericjy(dn - Dl —aericiy(dn £ 3)] -+ ...} = F(o; n; y). {13)
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m =3 In this method Eq. (4) has the form

] 1 0
g8 ; = mH__ b %,
A A ARy
or
% nYP _vp Lo
g & '
and instead of (11) we have
0 g " 5 2 M =
. T Ve | 9
Fig. 3. Graphs of m = f(a; M) 5 tT& w4
for 6, = 0.05, 6, = 0,10, and §, ’”*—Tﬁ,—— .

= 0.25 in the third method.
The graphs of m = f(a; n) are shown in Fig. 2c.

5. In the third method metallic plates M, and M, are used. The temperature field on which the third
method is based is described by

8= (1 o) [Fy(M; & y)-- Fy(M; o g) = ...
+ .. F (M o gy "’],:f(M; a; ).

15)

Equation (15) represents an infinite series in which each term is, in turn, an infinite series depending
on the three arguments M, ¢, and y. Here, besides the notation used earlier, we have introduced the fol-
lowing notations: M = h/2ya and y = (cpph /b, where (co)y, is the bulk specific heat of the metal from which
the metallic plates are made, and hy, is the thickness of the metallic plates; M = nvp, where n = VAT/y.

The additivity law of thermal resistances for this method has the form

H mH k| 2y

L]

Y U W W
or — — :
myp Vp _ 2hyb
€ g A2} AT

Considering that Ay /bVay, = £y and hy, = yb/(copy = ybam/)\.m we get
5 . 1
. (1_P) L

myp . 1/p _ 1 where  m — € €n . (16)

’ 2 ’

& & Em" (P

Equation (15) permits us to relate the quantities vp/e, M = nvVD, andk, and, hence, the quantities Vp/e, M,
and vp7¢' for a number of values of the parameters o and M for fixed values of 6, 6,, and 6;. We note that
Eq. (16) contains another characteristic ey, of the metal from which the metallic plates are made. The
quantity 1/e2 = bla; /A% is usually very small. Thus for copper plates and for a heat receiver made of
plastic we have

1 Vay _ 560%.1.12-107¢
e hm 388
The accuracy of the computation of this quantity is much smaller than that of the quantities Vp/e, M, and
¥p7e'. If in (16) we disregard the term 1/el , we get

= 2.3-107 2 0.0002.

= _]/_fpls_ . (17)
—’/}7/8'
The graphs of m = f(e; M) are shown in Fig. 3.

6. In the fourth method the plates M, and M, have the same thickness but the material is different
from that of the heat receiver.

In this case the temperature field already depends on four parameters:

0= L —F(e n; y; &) 49
tﬂ
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TABLE 1. Results of Verification of the Applicability of the Addi-
tivity Law of Thermal Conductivity in Nonsteady Regimes

Thermal conductivity W/m-deg
Method and investigated material : —

A ! A I » ! A [ m
First buffer method 0,126 0,123 0,134 | 0,131 0,98
A = Vaseline oil
M = plastic;h = 2.10% m
B - plastic
Second basic method 0,126 0,125 0,137 0,138 1,01

A - Vaseline oil

M ~ plastic; h = 2-10% m
B - plastic;h=09.10"m |
Second buffer method ! 0,127 0,124 | 0,142 0,139 0,98
A - Vaseline oil i
M - plastic; ho = 2-10=*m ,
B - plastic

Third method 0,170 0,140 0,207 | 0,171 0,82
A -rtesin;h=5:10"mm

M - copper; hy= 1.1 10-* m
B - quartz sand |
First buffer method ; 1,35 1,75
A ~ quartz glass i
M - protective resinh= 2.10-*m

0,442 | 0,463 1,05

B — protective resin; hy = 2.65+
10-*m

Second basic method : 1,35 0,965 | 0,442
A - quartz glass 1 |
M -protectiveresin;h=2-10""m
B ~ protectiveresin;hy=2.65-

10-° m :

0,420 0,95

i i

where besides the notation used above, we have introduced the additional notation g, = Ay/bvg. Unlike the

second buffer method, here A\y/Va, # Ap/Vap. The additivity law of thermal resistances for this method is
of the form

mH h 2
0y (19)
or
mip _Vp _ _ %h
g e 7»02]//3?1— ’

Multiplying and dividing the right-hand side by va; we obtain 2h v /A VAT Va, = 2&/¢, and then we have

n = ““"TI_’—O‘_ . (20)
1 plie
An analysis of the dependence m = f(e, &;, n} and the construction of the corresponding graphs is the
subject of a separate article, since the combination of the thermophysical properties of the heat receiver,
the buffer plates, and the investigated material can be very diverse.

7. It is evident from Fig, 2 that for @ = 0, that is, ¢ = 1, the additivity law of the thermal resistances
for the first buffer method, the second basic method, and the second buffer method is valid with an error
not exceeding 2-3%.

For o > 0, the error 6(A") = (m—1) becomes appreciable. The smaller the value n and the cloger the
value of o to zero the smaller is the error 6(A"). For larger values of o the error 6 (') is large even for
small values of n. Thus, for example, in the first buffer method for a = +0.5 the error 6(A") reaches 119
even for n = 0,1 (see Fig, 2a),

In order to have the pogsibility of applying the additivity law of thermal resistances under the condi-
tions of the third method, it is necegsary that m be close to unity, that is, the quantity vp/e be close to Vp*
/¢ as follows from formula (17). However, it is evident from Fig. 3 that this requirement is poorly satis-
fied. The error from the application of the additivity law in the conditions of the third method especially
for small values of M can reach 50% and more.
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Thus, the accuracy of determining the coefficient of thermal conductivity A from the additivity law of
thermal resistances is determined by the nature of the temperature field and the relation of the thermo-
physical characteristics of the investigated medium and heat receiver. For certain temperature fields the
error in the determination of the coefficient A from (1) can have large values as, for example, in the condi-
tions of the third method. Furthermore, it should be noted that since m = f(a, n), the error S(A') = m—1
depends on the unknown characteristics of investigated material

g = 1+a = X% andn::—h‘v‘— /a—O.
1—a bV a AV a .

Therefore, the correction factor m (or o) cannot be determined by any calibration method.

The coefficient of thermal conductivity A has a clear physical meaning only for homogeneous iso-
tropic bodies. The solid materials often ugsed in practice have layered or fibrous structures with inclu-
sions of holes containing air and moisture. In thig case the coefficient of thermal conductivity of the same
material in mutually opposite directions, determined by the nonsteady methods, will have different values.
This must be taken into consideration in thermophysical investigationsg, in particular, in the methods of
electrothermal analogies.

We noted that in the first buffer method the buffer plate is in contact with the heat receiver and the

_ investigated medium is in contact with heater. On the other hand, in the second basic method the investi~
gated medium is in contact with the heat receiver and the buffer plate (bottom of the vessel) is in contact
with the heater. Thus an interchange of the plates M and A (see Fig. 1) is equivalent to the transition from
the first buffer method to the second basic method. But the values of m for these methods with other con-
ditions remaining equal are different (see Figs,2a,b), This proves the validity of the statement that the
effective value of the thermal conductivity of the system of contacting plates or of layered materialg in
eonditions of nongteady regimes depends on the order of arrangement of the plates in the multilayered sys-
tem and, hence, on the direction of the heat flux.

For an experimental verification of the applicability of the additivity law of thermal registances in
conditions of nonsteady regimes we made use of those observations presented by Volkenshtein [1]. If the
‘observations illustrating the first and second buffer methods, the second basic method, and the third meth-
od are analyzed by the first bagic method, then we obtain the effective values of the thermophysical char-
acteristics A" and a" for the system of plates. Knowing the effective values A" and using the additivity law
of thermal resistances we can calculate the value of the thermal conductivity of the investigated medium
Ay and compare it with the value A given by some method directly. Furthermore, using the values of A as
the true value of the thermal conductivity of the investigated medium we can find the effective value A* in
the conditions of the steady regime and determine the value m = A"/X' for the given experiment.

The results of this computation are given in Table 1. These results are in good agreement with the
theoretical analysis discussed above.
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